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ABSTRACT

The reaction of tri-O-acetyl-D-glucal with nucleophiles to afford the corresponding

2,3-unsaturated glycopyranosides in excellent yields by zirconium(IV) chloride in

acetonitrile at ambient temperature has been demonstrated.

Key Words: Ferrier rearrangement; 2,3-Unsaturated glycopyranosides; Nucleophiles;

Heteroaromatics; Protected amino acids; Zirconium(IV) chloride.

INTRODUCTION

Unsaturated carbohydrates are a versatile class of compounds in synthetic organic

chemistry in which alkyl, aryl 2,3-unsaturated glycosides are important building blocks

in many bioactive molecules.[1] C-glycosyl, N-glycosyl reactions are important chiral

intermediates for the synthesis of biologically active natural products[2] such as anti-

virals,[3,4] antitumor agents,[3,4] C-glycosyl antibiotics,[5] palytoxin,[6] spongistatin,[7]

halichondrin,[8] glycopeptides,[9,10] glycoprotein modified carbohydrates,[11] and

nucleosides.[12]

Products of C-glycosidation are important intermediates due to their propensity for

further functionalization. For instance, allyl glycosides are amenable to hydroxylation,

epoxidation, amino hydroxylation, and hydrogenation, while glycosyl cyanides are

useful chiral intermediates[13] due to the readily transformed cyanide group. Alternatively,

glycosyl azides are important precursors for the synthesis of glycosyl amine.

RESULTS AND DISCUSSION

The well-known Ferrier rearrangement,[14] involving Lewis acid catalyzed allylic

rearrangement, is widely used to obtain 2,3-unsaturated glycosides and thus gives

access to the aforementioned structures. A variety of reagents are used to effect this trans-

formation, which include strong acids such as BF3OEt2,[15,16] SnCl4,[17,18] and

TMSOTf.[19] Other reagents such as acidic montmorillonite K-10,[20] DDQ,[21]

InCl3,[22,23] and BiCl3
[24] triflates such as Sc(OTf)3,[25,26] and Yb(OTf)3

[27,28] are also

known to bring about the Ferrier rearrangement under different conditions. However,

many of these procedures suffer from disadvantages such as strong oxidizing conditions,

high acidity, longer reaction times, unsatisfactory yields, low stereoselectivity, and use of

a large amount of reagent or catalyst. For instance, various amounts of BF3 OEt2
[9,10] are

often needed to effect the transformation, while metal triflates can be highly expensive. No

single catalyst is able to perform to carryout C, N, O, S, and heteroaromatic glycosylation

reaction in the Ferrier rearrangement.

Previously, ZrCl4 has been used as an efficient catalyst in acetalization, dithioaceta-

lization,[29,30] and 1,3-oxathiolanes of carbonyl compounds. Also it has been used in trans-

thioacetalizations of acetals,[31] and in the synthesis of chloromethyl esters.[32] In view of

the current thrust on catalytic processes, there is merit in developing a truly catalytic

method to prepare 2,3-unsaturated C-glycosyl, glycosyl azide from silylated nucleophiles

such as allyltrimethyl silane, trimethylsilyl cynide, and allyltrimethyl azide using
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inexpensive and nonpolluting reagents. Herein, we wish to report zirconium(IV) chloride

catalyzed glycosylation with silylated nucleophiles, heteroaromatics, and protected amino

acids. The reaction proceeds efficiently at ambient temperature and the products are

obtained in excellent yields (Sch. 1). Furthermore, other functionalities such as Bz, Bn,

NHBOC, NHCBz, Ac, OMe, allyl, CN, and N3 are compatible under the reaction con-

ditions. The reaction conditions are very mild and no by-products are observed. We

first examined the reaction of tri-O-acetyl-D-glucal with allyltrimethyl silane in the pre-

sence of zirconium(IV) chloride in acetonitrile at ambient temperatures affording the cor-

responding 2,3-unsaturated glycopyranoside in 95% yield (Tab. 1 entry a). This success

encouraged us to extend the generality of the reaction. The glycosidation of tri-O-acetyl

glucal with trimethylsilyl cyanide, allyltrimethyl azide, and protected amino acids pro-

ceeded smoothly (Tab. 1). These compounds are potential precursors for the synthesis

of glycopeptide building blocks.

In conclusion, the present procedure has the advantages of mild reaction conditions,

high stereoselectivity, reduced reaction time, inexpensive catalyst, high yields of products,

and simple experimental work-up procedure for the preparation of 2,3-unsaturated

glycosylated products. Zirconium(IV) chloride catalyzed Ferrier glycosylation has been

developed to produce structurally diverse C, N, O, S, and heteroaromatic glycosylation

reaction in the Ferrier rearrangement and will be an important addition to the existing

methodologies.

EXPERIMENTAL

General procedure: A solution of glucal (1 mmol) and nucleophiles (1.1 mmol) in

MeCN (10 mL) was treated with zirconium(IV) chloride (5 %mol) and stirred for an

appropriate time (Tab. 1) at rt. After completion of the reaction, the solvent was

removed from the reaction mixture under reduced pressure, water was added and the

reaction contents were extracted into EtOAc. The organic layer was dried over anhyd.

Na2SO4 and concentrated to give the crude product, which was purified by silica gel

chromatography eluting with ethyl acetate : hexane (2 : 8) to give pure 2,3-unsaturated

glycopyranosides in high yields (Tab. 1).

C-Allyl 4,6-di-O-acetyl-2,3-dideoxy-a-D-erythro-hex-2-enopyranoside (a): 1H

NMR (CDCl3, 200 MHz): d 2.08 (s, 6H, Ac), 2.35–2.45 (m, 2H, Ha-1
1, Hb-11), 3.95

(dt, 1H, J5,6 ¼ 6.5 and J5,4 ¼ 3.7 Hz), 4.10–4.20 (m, 2H, Ha-6, Hb-6), 4.25–4.30

(m, 1H, Ha-4), 5.05–5.20 (m, 3H, Ha-3, Ha-2, Ha-2
1), 5.75–5.95 (m, 3H, Ha-1, Ha-3

1,

Hb-31). FAB-MS: 255 (Mþ
þ 1).

C-Allyl 4,6-di-O-benzyl-2,3-dideoxy-a-D-erythro-hex-2-enopyranoside (c): 1H

NMR (CDCl3, 200 MHz): d 2.21–2.3 (m, 1H, Ha-1
1), 2.4–2.5 (m, 1H, Hb-11), 3.61 (dd,

Scheme 1.
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Table 1.

Entry Acceptor

2,3-Unsaturated

Glycoside

Time

(min)

Yield

(%)a
Anomeric ratio

(a/b)b Ref.

a) 60 96 10 : 1

b) 60 95 9 : 1 [22,23]

c) 60 96 11 : 1

d) 60 64 8 : 2 [22,23]

e) 60 66 8 : 2 [22,23]

f) 30 56 8 : 3 [22,23]

g) 30 55 9 : 3 [22,23]

h) Me3Si-CN 30 75 10 : 1 [24]

i) Me3Si-N3 30 70 8 : 3 [24]

j) 45 81 7 : 4

k) 45 85 9 : 2

l) Ph-SH 60 87 10 : 1 [1]

aIsolated yield as pure anomeric mixtures after purification.
bThe anomeric ratio was determined on the basis of the integration ratios of the anomeric hydrogens

in the 1H NMR spectra at 200 MHz.
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2H, J6,6 ¼ 4 Hz, J5,6 ¼ 4 Hz, Ha-6, Hb-6), 3.73 (d, 1H, J5,6 ¼ 5 Hz, Ha-5), 3.96 (d, 1H,

J4,3 ¼ 5 Hz, Ha-4), 4.28 (br d, 1H, J3,4 ¼ 5 Hz, H-3), 4.4–4.5 (dd, 2H, J1,1 ¼ 6 Hz,

J1,1 ¼ 6 Hz, OCH2), 4.53–4.6 (dd, 2H, J1,1 ¼ 6 Hz, J1,1 ¼ 6 Hz, OCH2), 5.0 (d, 1H,

J2,3 ¼ 4 Hz, Ha-3
1), 5.1 (d, 1H, J2,3 ¼ 5 Hz, Hb-31), 5.76–5.82 (m, 2H, Ha-2, Ha-1),

5.83 (d, 1H J1,2 ¼ 6 Hz, Ha-1), 7.2–7.3 (m, 10H, Ar) FAB-MS: 351(Mþ
þ 1).

2-(4,6-di-O-acetyl-2,3-dideoxy-a-D-erythro-hex-2-enopyranosyl)furan (d): 1H

NMR (CDCl3, 200 MHz): d 1.98 (s, 3H, Ac), 2.1 (s, 3H, Ac), 4.03 (dt, 1H, J5,6 ¼ 1.8,

J5,4 ¼ 6 Hz, Ha-3), 4.15 (m, 1H, Ha-5), 4.30 (m, 2H, OCH2, Ha-6, Hb-6), 4.81 (t, 1H,

J2,1 ¼ 6 Hz, J2,3 ¼ Ha-2), 5.07 (dd, 1H, J4,5 ¼ 6 Hz, J4,3 ¼ 8 Hz, Ha-4), 6.13 (d, 1H,

J ¼ 3.5 Hz, Ha, Aryl), 6.34 (dd, 1H, J2,1 ¼ 2.5, J2,3 ¼ 3.5 Hz, Hb, Aryl), 6.51 (d, 1H,

J1,2 ¼ 4 Hz, Ha-1), 7.37 (d,1H, J ¼ 2.5 Hz, Hc, Aryl) FAB-MS: 281 (Mþ
þ 1).

N-(tert-butoxycarbonyl)-O-(4,6-di-O-acetyl 2,3-dideoxy-a-D-erythro-hex-2-eno-
pyranosyl)-L-threonine methyl ester (j): [a]D

25
þ 42.390 (c ¼ 1, CHCl3): 1H NMR

(CDCl3, 200 MHz): d 1.31 (d, J ¼ 6.3 Hz, 3H CH3), 1.42 (s, 9H, C(CH3)3), 2.08

(s, 6H,OAc), 3.78 (s, 3H, COOMe), 4.08–3.80 (m, 5H, Ha-5, Ha-6, Hb-6, a-CH,

b-CH), 4.95 (brs, 1H, Ha-1), 5.15 (d, JNHa ¼ 9.8 Hz,1H, NH), 5.26 (dd J3,4 ¼ 1.1 Hz,

J4,5 ¼ 9.8 Hz, 1H, Ha-4), 5.65 (brs, 1H, H-2), 5.84 (brs, 1H, H-3) FAB-MS: 446 (Mþ
þ 1).

N-(benzyloxycarbonyl)-O-(4,6-di-O-acetyl-2,3-dideoxy-a-D-erythro-hex-2-eno-
pyranoside)-L-serine methyl ester (k): 1H NMR (CDCl3, 200 MHz): d 2.08 (s, 6H,

OCOCH3), 3.75 (s, 3H, COOMe), 3.9–4.03 (m, 2H, Ha-6, Hb-6), 4.10–4.22 (m, 3H,

a-CH, b-CH2), 4.42–4.55 (m, 1H H-5), 5.09 (s, 2H, OCH2-Ph), 5.20 (d, 1H,

J ¼ 10 Hz, H-4), 5.72–5.88 (m, 3H, H-1, H-2, H-3), 7.28–3.80 (m, 5H, Ar) FAB-MS:

466 (Mþ
þ 1).
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